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NATTONAT. ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE L4278

APPLTCATION OF STATISTICAL THEORY TO BEAM-RIDER
GUIDANCE IN THE PRESENCE OF NOISE.
II ~ MODIFIED WIENER FILTER THEORY'

By Elwood C. Stewart
SUMMARY

A study has been made of the application of Newton's modification
of the Wiener filter theory to the optimization of a beam-rider guidance
system operating in the presence of glint noise. Target and missile
motione are assumed to be coplanar,

The theory has been applied using & typical variable-incidence
missile by placing a reelistic restriction on the mean-square surface
deflection so that the system operation is confined to the linear range.
The transfer functions of the optimum guidance system are derived and
an example missile-control system i1s synthesized. It is shown that the
minimum gttainable error corresponding to a realistic control restriction
is close to that for the Wiener theory. Performance of the system versus
noise magnitude is given.

It is shown that the most criticsl saturable quantity is control
deflection since constraining control deflections to reslistic values can
prevent saturstion of other important guantities. Servo energy require-
ments are also greatly reduced in comparison with systems in which
saturation is allowed to occur.

INTRODUCTION

Noise effects in missile-guidance systems impose one of the most
serious limitations on the effectiveness of a missile. Nolse signals in
general have the effect of adding to the system false information which
cannot be distinguished from true information. Thus the missile responds
to the noise signals as well as to the true signal; the miss distance is
thereby increased. Since many sources of noise (such as angular scintil-
lation) are inherent in the physicel mode of operation and cannot be
removed, it is important that missile systems be designed to minimize the
miss even though the noise is present. Statistical filter theory is useful
in performing this minimization.

One of the most velusgble theories has been developed by Wiener
(refs, 1 and 2). A previous report has considered the gpplication of this
1Supersedes recently declassifled NACA Research Memorandum ASSElla
by Blwood C. Stewart, 1955.




2 ‘ NACA TN 4278

theory to the minimization of the effects of radar glint noise in a beam-
rider guidance system (ref. 3). It was found there that the optimum per-
formance specified by the theory could not be obtained because of certain
practical restrictions, as for example, limiting of control deflection.
Further study showed, however, that even in the presence of limiting, the
optimum performance could be epproached by the addition of network filter-
ing to the guidance system. On the other hand, the optimum form for the
added filtering could not be determined from this study since the system
design was based on a theory which did not take intc account the finite
range of operation of the satureble quantities. In the present report an
attempt is made to overcome this deficiency by determining the optimum
transfer function under this last restriction. The theory for such an
approach was made availgble in a paper by G. C. Newton (ref. 4) on a
modification of the Wiener theory.

In the application of this theory to the missile guidance problem it
is necessary to meke certain assumptions. The main assumption made in
reference 3, that is, the assumption that the target and missile move in
the seme plane, also will be made here. Other assumptions, such as those
relating to the class of target maneuvers and noise, are discussed in the
text.

SYMBOLS

Heo transfer function of optimum compensating network

He transfer function of the fixed network

N nolse magnitude or zero frequency spectral density, ftz/radian/sec

Ty time constant of the noise spectrum shaping filter, sec

Yo optimunm closed-loop transfer function

am acceleration of target meneuver, ft/sec?®

k twice the average switching rate of target acceleration, l/sec

Yp target displacement from a space reference, £t

N apparent target displacement from true target center due to nolse,
£t -

M missile displacement from a space reference, ft

®14 cross-spectral density of the input signal with the desired output
d14 gpectral density of the input signal

oy spectral density of noise displacement yy, £t2 /redien/sec

o] spectral density of target displacement ym, ftz/radian/sec

€ error between target and missile position, yp ~ yy, £t
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€ component of error € due to target motiorn, £t
ex component of error € due to noise, £t
p Lagrangian miltiplier

control~surface deflection, radians

¥ angle of yaw, radlans

Ho optimum open-loop transfer function
open-loop transfer function of system approximation to pg
engular frequency, radians/sec

( ) complex conjugate of ( )

(GENERAL: CONSIDERATTIONS

Glint noise is a term that is used to describe a shift in the appar-
ent target location as determined by a radar. It is due basically to the
variable reflection characteristics of aircraft targets and arises from
the reletive movement of the various reflecting surfaces. Since the radar
utilizes the reflected signal to determine target location, variations in
the reflected signsl are interpreted by the radar as shifts in the target
location. Of the meny sources of noise which msy exist in a missile-
control system, glint noise is one of the most serious since it has a
physical origin which cannot be eliminated, imposing a fundamental limi-
tation on missile effectiveness. The situation in regsrd to glint noise
is illustrated in figure 1(a) where the true target position is indicated
as yp and the glint noise 1s represented by the displacement Y.

The present report is restricted, for the sake of simplicity, to a
two-dimensional study in which the target and missile move in a horizon-
tal plane as shown 1n figure l(a.).2 The attack situstion, that is the
angle between missile and target velocity vectors, may be arbitrary. How-
ever, in order to illustrate the theory, the tall chase illustrated in
figure 1(a) will be considered. It should be noted that for this case
the reference line is fixed in space. The guldance system which is con-
sidered to be of the beam-rider type is illustrated in figures 1(a) and
1(b). TIte function is to make the missile position coincide as closely
as possible with the true target position Y. The difference Yp = Yy
is indicated on this figure by the error €, which obviocusly should be
minimized. The criterion of merit which will be used here 1s the conven-
tional mean-square time average of the error. This criterion is particu-
larly appropriate in the case of the beam-rider system because the target-
to-missile range is not normally transmitted to the missile; since the
missile never knows when the target will be reached, 1t 1s reasonable to
minimize the error for all values of time.

2The complete three-dimensionel problem would require a more complex
analysis than used herein. Possibly either the present theory or Wiener's
theory for multiple time series (ref. 1) could be applied to this case.
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Emphasis should be made that although the example case is tsken to
be a tall chase, it contains the essential ingredients of the problem.
For other attack situations a coordinate system can be defined such that
displacements and accelerastions are measured from & new reference line
which is not fixed in space. This line is one which translates with con-
stant velocity and without rotation. There are several suitable condi-
tions under which such a reference line can be so defined. In the first,
wherein the launching aircraft flies a collision course with the target,
the line of sight between launcher and target (which coincides with the
radar beam, ideally) would be & suitable reference line. Another case
would be one in which the tracking rader is sufflciently far from the
target that rotations of the line of sight are small. In either case,
all displacement guantities as well as accelerations are then measured
perpendicular to the reference line Jjust as shown in figure 1(a).

The design of a system normally depends on the inputs to be encoun-
tered, in this case, the target motion and the nolse. Because of their
random nature, neither of these quantities can be conveniently described
explicitly as functions of time, and statistical descriptions are more
suiteble. In the following paragraphs the target motion and noise are
briefly described. - - : : - o

The glint noise can be defined by specifying both the power spectrum,
or power spectral density as a function of frequency, and the amplitude
distribution. Many measurements have been made on the characteristics of
glint noise. (For a brief bibliography see ref. 3.) Although these meas-
urements are somewhat complicated and uncertain, it is generally found
that the amplitude distribution 1s approximately Gaussian and that the
spectral density can be adequately represented by

N
N Ty = + 1 (1)
An examination of glint noise spectra indicates that the break point
(1/2xTy) is generally on the order of several cycles per second end as
in reference 3 will be taken to be 6 cps, corresponding to Ty = 0.0265
second. The magnitude of the spectrum, N, of eguation (1) depends on
factors such as target size and target aspect so that the guidance system
is generally forced to operate over a wide range of magnitudes, This
range may extend from 7 fta/radian/sec for small targets up to around
30 ft2/radian/sec for large bombers. For this renge of magnitudes it
might be thought that 1t would be necessary to optimize the system for
each noise magnitude. As shown in reference 3, however, this was not the
cese for the method used therein since near optimum results were obtained
by optimizing only for a mid-range value called the design value. It is
not unreasonable to believe that the same will hold for the method of the
present report. As in reference 3, a design value of 15 ftz/radian/sec
will be used here.

The type of target maneuver upon which to base the system design can
never be determined with certainty, since the target quite obvicusly may
maneuver . in many different ways. A reasonable situation might be one in
which the target pillot 1s only aware of the attack and therefore maneuvers
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in some random manner to avoid being hit., One of the most useful concepts
in system design and the one which 1s used in this report is to plcture the
target evasive maneuver as a stationary random process in which the target
turns at its maximum possible rate alternately in opposite directlons with-
out regard to what the attacking missile is doing. The length of time
between switches is assumed to be randomly distributed according to a
Poisson distribution [(1/T)exp(-T/T)], where T represents the length of
the intervel snd T +the average interval length. It can be shown that
the spectral density of the target accleration is described by
) kaT2
Y7 x(w® +k2)
Here the quantity ap represents the magnitude of the target accelera~
tion normal to the beam, and k 1s twice the average switching rate of
k= E/T. The spectral density of the target displacement is then given by
kag™
op = Oy, = —27 3 v 2
T=797 7 (@ +k2) @)

For the example tail-chase situation, the target is asssumed to maneuver
with +lg acceleration with an average period of five seconds, which gives
ap = 32.2 ft/sec and k = 0.4 switch/sec.

There are several important comments to be made concerning this type
of input: (1) First of all, & statistical description of the target maneu-
ver process is a deslrable one, since target motions cannot be described
as unique functions of time. (2) It is clear that the maneuver assumed is
a severe one and puts the system to & good test; it is often found that
systems designed according to theories based on either no maneuver or very
weak maneuvers have unacceptably poor performance in the presence of a
more severe maneuver. (3) Another considerestion not generally realized is
that the stationary process described above is alsc applicable to certain
important nonstationary processes. In any real problem it is apparent
that the inputs are distinctly nonsbtationary. For instance, they are non-
stationary because the target motion and noise do not exist for an infi-
nitely long time into the past. However, the nonstationary character of
the input is due to the strict mathematical definition. It is clear that
in the practical case it mekes little difference to the missile, so far as
miss distance is concerned, whether a process persists over an infinite or
a finite period so long as the process begins at & time before the end of
the attack by an amount equal to or greater than the system response time.
(0f course, the process may terminate any time after the attack is over
without affecting the results.) In other words, an infinite period is,
for practical purposes, simply one which is longer than the system response
time. Thus, when the system response times are short, results obtained by
means of the stationary input apply directly to an important class of non-
stationary problems. The results presented herein are in this category.
(1) It should be pointed out that an optimum design based on the above tar-
get maneuver will operate efficiently against this class of maneuver as a
whole, although not necessarily efficiently against any one particular tar-
get maneuver (e.g., a single target turn). However, as indicated in refer-
ence 3, this design will be essentially optimum for the single-turn maneuver
as well,
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ANATLYSIS, RESULTS, AND DISCUSSION

The Modified Wiener Theory

The primary objective of the modified Wiener theory is to arrive at
an optimum transfer funcition in which the effects of certain saturating
elements are considered. Ideally it would be desirable to determine this
optimmm transfer function without any assumptions about whether or not the
system would operate in these saturation regions. However, no such theory
is available at present. The approach considered herein 1s one in which
the transfer functions of certein aveilsble elements are chosen so that
saturation does not occur. Thus the system 1s forced to remain linear
and linear methods are immediately applicable, Although it is not appar-
ent at first glance, there are certain indicetions that this approach maey
lead to desirable results. First, it appears intuitively that saturation
is undesirable because of the loss of both intelligence and ebility to
control the missile when in the saturated regiomns. Second, 1t is indi-~
cated in reference 3 that the undesirable effecte of saturation can be
reduced by the addition of filtering without undue increase in the error;
this method in effect tends to keep the operation of the system in the
linear range. These are only indications, however, and the real Justi-
fication in the completely linear approach depends on the resultant error
performance which can only be established by investigation.

The theory to be used in this approach follows Newton's modification
of the Wiener filter theory. To describe the essentials of the theory it
will be convenient to refer to figure 2 where the block diagrem corre-
sponding to the general filter problem is given. It should be noted that
the notation here corresponds to that in reference 4. In the general
situation there are usually certain elements that are given and may not
be altered in the design of the system., These elements are denoted by
the transfer function Hp in the figure. In particular cases the fixed
elements might represent missile aerodynamics, servo motors, and so forth,
depending on the application. To describe the limiting or saturating
guantities it is necessary to express them in terms of the fixed elements
and either the input or output of the system. Which choice is made de-
pends on the location of the fixed elements - if the output element is
Pixed, as 1s usually the case, it is desirable to express the saturating
quentities in terms of the output. Figure 2 illustrates a situation
wherein the output element is fixed. At this point it is necessary to
know the saturating quantities. For this purpose we Introduce a ficti-
tious situation. Since in the general case the saturating quantities are
different from the input to the fixed network, the input to Hp in
figure 2 is imagined to be fed through certain transfer functions Hgp
which act as recording elements and whose outputs are the saturating
quentities Ogp. It should be pointed out that according to this formu-
lation of the problem the outputs of the saturating elements do not feed
into the system but are used merely for the purpose of evaluation. From
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the above discussion, then, it is clear that by specifying both the fixed
and saturating networks, the saturating quantities can be related to the
output., The remainder of the system, indicated in figure 2 by the compen-
sating network H,, 1is unknown and must be determined according to a
specified criterion of merit.

By way of comparison, the originel Wiener theory considers only the
problem of choosing the over-all transfer function so as to result in
minimum mean-square error, B¢, between the actual output, 6o, and the
desired output, 63- The modified theory, however, considers the minimi-
zation of this same mean-square error wilth a side restriction on the

available range of operation of the limiting quantities; for mathematical
reasons 1t is convenlent to consider this restriction to be 1n the form
of a mean-square limitation. According to the method of Lagrange (ref. 5)
this means that the quantity to be minimized is of the form

N

6€ + z pnesn (3)
n=31

where the p,'s represent Lagrangian multipliers which must be chosen
properly to restrict the operation of the satureble quantitles 8g, to
very nearly the linear range.

In most cases it is possible to control saturation by an appropriste
choice of the mean-square value of the saturating quantities 6g,. In the
simple case when a quantity has & Gaussian distribution of amplitudes the
relation between the mean-square value of this quantity and the probabiiity
of its limiting is well known and particularly simple. The distribution of
the seturating quantity in the actual case may not be Gaussian for either
of two reasons: First the input may not be Gaussian or, second, there msy
be several satursting quantities which intersct. On the other harnd, even
in these cases the distribution is freguently near enough to Gausslan that
saturation can be readily controlled by an appropriaste choice of mean-
square value.

The derivstlon of the solution for the optimum compensating network
which minimizes the expression (3) is beyond the scope of this report,
but as shown in reference 4 an expression for this network is

o © Fa(ia)d (a)eiat
HCo(iw) = 21(1\.'{(0.)) £ e-iwt[m z AE%G.)
where F (L)

-

da dt

N
[Hf(im)Hf(iw) +anﬁsn(iw)Hsn(iw) 14 (w)

n=1 J

Alw)
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In thls equation the ¢ quantities represent certain combinations of
target motion and noise spectral densities (see Appendix A), Hp refers

to the fixed network transfer function, Hgn refers to the transfer func-
tion of the nth saturating component, and p, represents the correspond-
ing Lagrangian multiplier. Of these quantities, all will normally be
known with the exception of the p,. This means that only the form of

Heo 1s known from this equation since the numerical constants depend on
the values of p,. The p,, however, are implicitly related (ref. ¥) to
the mean-square restrictions on 8gy by the followlng equation

0.2 - f Fog (10) Hoo (10) oy (T0)Hg , (10)04 4 () dw (5)

co

Here it is to be noted that the integrand in equation (5) is dependent
on the PLsPzs e+ sPy by virtue of the dependence of Hgo on these quan-

tities (eq. (4)). It can be shown that in meny cases of interest the ppts
are uniquely determined by the equations (%) and (5) when a suitable mean-

square value, 6gpZ; 1s chosen. This quantity is to be chosen so as to
limit the probability of saturation to a small value according to a cri-
terion given later. In most practical applications the complexity of the
operstions involved in solving these equations does not permit the genersml
solution to be obtained explicitly in terms of the input characteristics
and fixed networks. In spite of this a great deal can be learned from
certain numerical solutions, as will be shown.

Application of Modified Wiener Theory to the
Beam-Rider Guidance System

The validity of the application of the modified Wiener theory to the
beam-rider guidence problem depends on whether or not several restrictions
inherent in the theory are met. In general, they are no stricter than are
thoge of the ummodified Wiener theory. First, the input gquentities, target
motion and noise, must be stationary random serles (see ref. 6 for a
detailed definition) and defined by corresponding power spectra which are
continuous. It is generally believed that displacements at the target are
approximately statlionary random series (ref. 3). Since the beam-rider
system operates from these displacements, the inputs to the beam-rider
system are also stationary random series. Second, the transfer function
of the system must have constant coefficients. In general, however, the
kinematic loop of guidance systems involves & time-varisble range factor.
In particular, for the beam-rider system the time-variable factor is the
ratio of the launcher-to-missile end the launcher-~to-target ranges. On
the other hand, because the miss is determined primarily by what happens
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near the end of flight during which the variation 1n this ratio is small,
it 1s reasongble to assume that the requirement of constant coefficients
is approximately met. Third, the transfer functions of the fixed and
ssturating components must be known.

Simplificstions.- There are many quantities which may saturate in the
beam-rider system; the most important are (1) control motion, (2) rate of
control motion, and (3) radar receiver voltages. To apply the theory to
all these nonlinearities simmltaneously would be a tremendous task. How-
ever, there are indications that only one limlting quantlty need be con-
sidered in the present problem.

One indication is that of the three types of limiting not all are of
equal severity so that one type tends to predominate. Imtuitively, it
might be felt that control-motion limiting is the most serious type and
that placing a restriction on the control motion will satisfactorily reduce
the other types of limiting. Of course the validity of this presumptlon
would require verification.

Another indicaetion is that of the three types of limiting one is more
Pundsmental in thet it is more difficult to remove than the others. It
will be noted that items (2) and (3) above are both control-system limita-
tions while (1) is essentially an aerodynamic or mechanical limitation.
Since control systems are relatively versatile and can be designed to cover
a wide range of characteristics, it appears that control-motion limiting
is the most fundamental to the problem.

From these indications it appears reasonable to consider only control-
motion limiting. The validity of the assumption that reducing this one
type of limiting will reduce the other types sufficiently will then be
verified, In terms of figure 2 this simplification means that only one
saturating-component transfer function, Hg, is involved. If the fixed
network is chosen to be the aerodynamic trensfer function so that the
control motion is the input to the f£ixed network, then Hg equals unity.
Thus, & block diagram more suited to the specific case of the beam-rider
system would appear as in figure 3. It will be noted in figure 3 that the
input quantity called 63 in figure 2 has been split into the two parts
which exist in the actual case, target motion yq and noise yy. Like-
wise the desired output 63 of figure 2 is represented in figure 3 by the
target motion ygp. The box Hoo, then, is that portion of the guidance
system which is to be chosen to minimize the expression (3). It may be
noted that in the form given the dlagram does not bear a direct resemblance
to the form of an actual guidance system since the latter will involve
feedback loops. The form shown, however, typifies that of the general fil-
ter problem and is better suited to calculation. The solution of this
problem can be readily converted to that of the actusl beam-rider system.



10 NACA TN 4278

A few additional remarks are appropriate concerning the two quanti-
ties ¢35 and @34 1n equation (k). If ¢j3 is defined as the autocor-
relation function of the input in figure 2, then

T
P;4(T) = Llim 55 6i(t)esi(t + T)at
Tyeo -7

In terms of the input of figure 3, this becomes

S

¢11(T)

1m L [ |
T-i-:; _25_[; [yp(t) + yu(t) Iyp(t + 1) + yy(t + 7)]at

Op(T) + Q™) + Ppy(T) + Pprp(T)

It is normally assumed that there is no correlation between target motion
end noise so that Qpy(T) and Qyp(T) are zero. It follows that the Fourler

transform of @;4(T) is
Cbii(w) = @T(w) + ¢>N(w)

Since in the present case the target motion and the desired output are
identical it 1la easy to show in a similar fashion that

0ig(w) = dp(w)

General solution with control motion restriction.- By virtue of the
simplifications dlscussed in the previous peragraphs the appllcation of
the theory to a beam-rider-type guidance system becomes feasible. For the
case illustrated by figure 3, the optimum compensating network, H.,, 18
given by 1

g o Hp(1a)dm(a)e it
< Jf e'iwﬁ/" £ 7 da dt
O -

Feol1e) = ZaRFiey NOJ |

® (6)

where
A(w)

[Hf(imjﬂf(iw) + 9J¢ii(w)

o
In the ebove equation the quantities &g and ¢11 are known from the tar-

get motion and noise characteristics as previously discussed. The transfer

function Hp of the missile aerodynamics was chosen for this study to
represent that for a typical varigble-incidence missile. The significant
transfer functions for this missile are given by the following conventional
equations (ref. 7T)
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1 Tys + L 1
Ta s(Ta®s® + 2{,Tgs + 1} 1

¥
%=

M Ta T,2s® + 20, Tys + 1
v Tg® s(Tys + 1) (8)

from which the fixed network becomes

He = M _ 1 Tpos” + 2LpTps + 1
£ =% " TgZ 5P(TaZs® + 20 Tas + 1) (9

Table I summarizes the parameters for this particular missile at a given
flight conditlon. It should be pointed out for later comparison purposes
that these aerodynamics correspond to those used in the previous noise
study, reference 3. The remaining parameter p 1is not known so that
equation (6) can only be used to give the general form of Heg. To
illustrate this, the form of Heo 1s derived in Appendix A where 1t is
shown that

82(ToPe2+28 Tas+1) (Ta2s2+2¢  Tas+1)
(TBS+1)(T7282+2§7T78+1)(Tu282+2guTuS+l)(Tv252+2§vTVS+l)( }
10

Heo(s) = Tg2

Many of the factors involved in this equation dre functions of the unknown
parameter p. The exceptions are (1) the aerodynamic factors, that is,
the galn Tg2 and the second quedratic in the numerator, and (2) the terms
due to target motion and noise characteristics, that is, the first two
denominator factors. The remainder of the terms can only be evalusted
after the proper value of p has been established. This valune can be
determined from the restriction placed on the mean-square control motion.
The analog of equation (5) in the present case is

Eﬁ-=LZT“)Hcoiiwiﬂcé(iw)[éT(w) + oy(w) law (12)

In theory, equations (10) and (11) can be solved for the compensating
network, H,,, corresponding to an arbitrary mean-square control motion,
gg. In this appllcation, however, because of the complexity of the fixed
network end the input quantities, the computation is unwieldy. Alter-
natively the followlng procedure willl be used here: First calculate the
function Hge fTrom equation (10) for a selected value of p. After the
result is inserted in equation (11), evaluation of the integral gives a

value of gz. By repetition of this process for a few Judiciously
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selected values of p it is possible to determine the value of p
corresponding to the desired mean-square restriction EE.

As mentioned previously, Heo does not exist, as such, in the beam-
rider guldance system. The relationship between the filter problem being
solved and the actual beam-rider system 1s illustrated by a comparison of
figures 3 and 4. From figure 3 it is apparent that 1f the entire guldance-
system transfer function is represented by Yo, then

Yo = Heollr (12)

Thus the solutlon for the compensabing network Heo dJdetermines the desired
over-all transfer function Yo for the actual form of beam-rider system
shown in figure k.

Unfortunately, the theory does not give the performance of this opti-
mum system directly in terms of the resultant error. The minimum error can
be found, however, from the following relationship (ref. T)

—— —tr —

e = eq® + ex?

=f°° 1 - Yo(iw)fztbgg(w)dw '+f°° | Yo (iw) [2¢Ndw (13)

[+2] - 00

Effects of control-deflection restrlection.- The procedure discussed
in the above parsgraphs has been carried out for a renge of values of the
Lagrangien multiplier p. The resulits of this study are presented in
flgure 5 where the errors due to_%arget motion and noise, the total error,
and the control deflection are given as functions of p. These curves
illustrate the nsture of the restriction of the control deflection. Large
values of p here correspond to a large restrlction and therefore small
control deflections. It is apparent Prom the expression (3) that as p
decreases the restriction on control deflectlion is reduced until at p =0
the Wiener case is reached. By cross-plotting these curves so as to eliml-
nete the variable p vwhich has no significance in itself, the curve of
figure 6 is obbained. This curve is fundamental to the problem in that it
1llustrates the dependence of error on available surface deflection. Here
the minimum obtainable error according to Wiener theory is indicated by
the horizontal line off to the right. The curve is shown dotted in this
region in order to indicate that these values of error would require unob-
talnable .control deflections.

The importance of the curve of figure 6 is that it represents the theo-
retical lower limit of error corresponding to any restriction on root-mean-
square control motion. Each polnt on the curve would be achileved by a aif-
ferent guldance-system transfer function. The interesting festure of this
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curve is that as the surface deflection is reduced from large values, the
minimum error increases relatively slowly over an appreciable range of
obtainable control deflections. To determine the best operating point on
the curve it is necessary to specify the degree to which limiting will be
allowed to occur. Since in this linear case the control deflection is
Gaussian, an rms control deflection of half the maximum allowable deflec-
tion would then restrict it to within these limits about 95 percent of

the time (ref. 8). For the specific missile being used in this study the
meximum control deflectlon is ebout 150 which would put the desired opera-
ting point at 7.50 as indicated in figure 6. It can be seen from figure 6
that for this operating point the effect of this restriction is.an inerease
in error of about six feet above that of the Wiener theory. It is a some-
what surprising result that the increase in error is so small for such a
great reduction in surface deflection. The significance of this is, then,
that the optimum Wiener result can be approached closely even with the
operation confined to a realistic linear range.

Characteristics of the optimum transfer functions.- It is of interest
to consider in greater detail the transfer functions corresponding to the
desired operating point in figure 6. This operating point corresponds
very closely to a value of p = 10% (see fig. 5) which will therefore be
used as an example. In Appendix A the transfer functions of the compen-
sating network, closed-loop system, and open-loop system have been derived.
The results are given below; the numerical velues of the parameters are
summarized in table IT.

- T 2s24+28Tos+1 1 7.2 82 (Tg28242¢ g Tgs+1)
0 T (Tgetl) (T)PsP42l,Tys+l) T, 2s%42f,Tys+l = TyPsP4R{,Tys+l
(1)
T 5242 Tos+l 1 T 282 +2 £y, Ty 5+1
To = (Tps+1) (TyPs242yTys+l) T, Zs%+2¢, T s+l T, 282428, Ty s+l
(15)
L ToPsP420, TS+l 1 Ty, 25242 (T, 5+L
Mo =l 82 (Tp\s+1) TxZs2+28, Tys+1 Ty2sZ 42ty Tys+1
(16)
- ' -t ~
—~ N/ ~
Due to target. Due to control Due to
meneuver and noise restriction aerodynamics

(Wiener theory)



1k NACA TN L4278

It is 1lluminating to trace to their origin the various factors com-
prising these optimum transfer functions. Analysis shows that terms due
to the basic Wiener theory also appear in the modified theory. In addi-
tion, other terms due to the aerodynamics and the control-deflection
restriction also appear in the solution. This situation is illustrated
by the grouping of terms in equations (14), (15), and (16). It can be
sald thet the terms which arise from basic Wiener theory correspond in
form to the first group of terms. However, certain constants are some-
what altered, as can be seen from table II by a comparison of the param-
eters given for the two theories for identical target motion and nolse
characteristics. The second group of terms in the equations indicates
that the optimum form of the filtering term due to control-motion restric-
tion is quadratic.® The last group of terms in the transfer functions can
be traced to the aerodynamics. In fact, the numerators are ldentical with
terms in the aerodynamic transfer function.

The transfer functions are illustrated in figures T(a), 7(b), and
7(c); these curves represent the optimum transfer functions in the pres-
ence of the control-motion restriction. For comparison purposes the cor-
responding transfer functions obtalned from the Wiener theory are also
plotted on these figures. It can be seen that, in general, the transfer
Punctions for these two cases are simllar at the very low freguencies and
separate to a greater extent as the frequency is incressed. The difference
is primarily due to filtering terms which are required to satisfy the
restriction on control motion.

The added complexity has certain effects on the control motion and
error., These effects can best be illustrated by means of the correspond-
ing power .spectra, that is, by the integrands in equations (11) and (13).
These spectra have been plotted in figures 8 and 9, and for comparison the
corresponding curves for the Wiener theory are shown. It can be seen from
figure 8 that the spectrum of the control deflection for the more complex
system attenuates far more rapldly than does that for the Wiener theory.
It is as & result of this fact that the modified system does not limlt.

As for the error, it is seen from figure 9 that over the important fre-
quency range the error due to noise is not altered too seriously so that
most of the incresse in the total error is due to an increase in the tar-
get motion component. )

Effect of noise magnitude on performance.- The preceding results were
determined on the basis of a design noise magnitude which lay between the
expected extremes. The noise magnitude may vary because of targets of
different size, aspect, and turning rate. For this reason the error per-
Pormance for the optimum transfer functlon has been determined and 1s

31+ is interesting to note that from calculations not presented here
it has been observed that the damplng ratios of these quadratics always
1lie between 0.7 and 0.8 over the entire range of control motion presented
in figure 6.
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shown in Pigure 10 (curve A) as a Punction of the zero frequency noise
magnitude, N. The error performance shown is optimum only at the design
value of noise. Shown for comparison is curve B, which represents the
error performance derived from the Wiener theory, corresponding to the
same design condition (see ref. 3). The difference between these two
curves, then, is the increase in the error as a result of the rms restric-
tion on the control deflection.

As a further comparlson two additional curves obtained from refer-
ence 3 are shown. First, curve C illustrates the performance of & system
(with certain satureble elements) which was optimized for the fastest pos-
sible response to & step input in the gbsence of noise. The performance
can be seen to be significantly poorer than the optimum performance glven
as curve A. Second, the best result that could be obtalned in reference 3
is shown as curve D in the figure. The system corresponding to this curve
was not optlmum because the linear Wiener theory used in this approach was
not capzble of evaluating all of the various filtering terms discussed in
preceding paragraphs. For exemple, terms due to Wiener theory were not
altered, and terms due to aerodynamics were not used. Terms due to con-
trol restriction were included but the performance wes limited by the
arbitrarily sssumed form. Thus the system was not optimum and limiting
occurred; the performance deteriorated accordingly.

System synthesis.- To achieve the results which have been presented
it i necessary to design the guldance system shown in figure 4 to have
the optimum transfer fumction Yg. This can he done in many different
ways since the actual besm~rider system comsists of two distinct parts:
the tracking radar and the missile-~control system. For example, the opbti-
mum transfer function Yo might be split up and apportioned between these
two parts of the guidance system. Or, on the other hand, the missile-
control system alone might be designed to approximate the optimm VYo in
vwhich case the tracking radar should be designed to have a relatively fast
response. In & similar manner the tracking radar could be optimized, in
vwhich case the fast response should be designed into the missile-control
system.

To investigate all these possibilities is beyond the intended scope
of this report. As an example, however, of one possible design the choice
of missile-control-system filtering was investigated. For this case it is
desired to design the missile-control system to match the optimum transfer
Punction Yg. This procedure is not unique; the analysis used herein is
based primarily on cut-and-try procedures. It has been found that the
desired system could be synthesized in a conventional fashion illustrated
in figure 11. To show how this system is capable of supplying the optimum
filtering the open-loop transfer function bas been derived in Appendix B
where it 1s shown that with certain assumptions
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™ kpokgV (T1o8 + 1)(Tys + 1)(Tp2s2 + 28pTyps + 1)
3

u: =
Tg + kgkg  8%(Ty38 + 1) (Tgs + 1)(as® + bs® + cs + 1)

(17)

Comparison with the optimum pg in equation (16) shows that certain dif-
ferences in form exist. However, equation (16) can be expressed in another
form by factoring approximaetely certsin quadratic terms which have large
damping ratios. BEquation (16) can be written then as

(Tes + 1) (Tas + 1) (Tp®s® + 20 Tys + 1)
82(Ths + 1) (Tys + 1)[(Txs + 1)(Ty®s2 + 2lyTys + 1)]

Ho & Ky
(18)

It is now possible to choose the parameters in equation (17) to match those
of equation (18); the specific values are given in table III.

The remainder of the system consists of the tracking radar whose
response should be made relatively fast for this design approach. Further,
from the plots presented in figures 8 and 9 it is apparent that the track-
ing radar should be designed so as not to alter eppreciably the spectral
distribution of error or control motions. Thus & breek point or natursl
frequency of several cycles per second would be satisfactory.

Comparisons and other considerstlions.~ In a REAC simulation of this
system its operation was examlined in further detail. Of particular impor-
tance in this examination was the control deflectlion and the assoclated
servo energy. It was found that the control deflections were effectively
restrained.to within the linesr range and as a result the servo energy was
greatly reduced. For a given servo the power expended is proportional to
the time average of the sum of the absolute displacements of control
motion. Thus the average servo power over a sufficient time interval of
duration +t can be determined from

zlas]
1

average servo powver o

For this system there is more than a two-thirds reduction in required servo

energy over that for the system with smallest servo ehergy requlirement dis-

cusged in reference 3. The saving in servo energy becomes even greater
when compared to systems for which the error performance becomes progres-
slvely worse than the optimum. The control-deflection time history
obtained from the REAC was used to show that the required control rates
are easgily attainable since they rarely exceeded 3 tc 3.5 radians/sec.
This system has other virtues, For example, there is also a reduction

of voltages within the circult to reasonsble and easlly obtalnable values,
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From this simulation work, then, two facts are apparent. First, it
is clear that the validity of applying only & control-motion restriction
in the analysis has been verified, since the control rate and system vol-
tages did not saturate. Second, it is apparent thet in comparison with
systems of reference 3 in which limiting occurred, the present system not
only produced & smaller error but was accompanied by other desirseble
effects such as decreased servo energy and circult voltage requirements.

The missile-control system discussed in the gbove paragraphs is
intended only as an example designed to achieve optimum performance
against noise, It is clear that since the system operation 1s essen-
tially linear, all designs which approximate the desired Yo would give
approximately the same performance. However, it is often necessary to
satisfy other requirements which are relsted to the specific design objec-
tives of the system and which may favor certain designs or system con-
figurations, Because of the freedom 1ln choice in distributing the opti-
mum filtering in the system, the optimum characteristics specified by the
theory do not, in general, place an inherent limitation on satisfying other
requirements. For example, requlrements on transient response during the
beem entry phase may dictate & deslgn in which more of the optimm FPilter-
ing is located in the tracking radar. Similerly, requirements of simpli-
city on certaln parts of the system may dictate yet a different deslign.
Because these and similar requirements are related to the detalled design
objectives, an investigation of such factors is beyond the scope of this
report.

CONCLUDING REMARKS

This study has considered the application of Newton's modification
of the Wiener filter theory to the choice of optimum transfer function
for the beam-rider guldance system. The analysis has been applied to a
typicael variable-incidence missile at a given flight condition attacking
& maneuvering target in the presence of glint noise., By minimizing the
mean-square error with a slde restriction on the mean-square value of
certaln quantities, limiting effects, of primary Importance in missile
gulidance, are largely eliminated.

Although meny limiting-type nonlinesrities are of importance, this
study hes shown thet the critical nonlinearity is due to control-deflection
limiting, since a restriction epplied to the deflection sufficient to con-
fine control motions to within the linear range also satisfactorily pre-
vented other types of limiting. Resulis have been glven which illustrate
the effect of the control-motion restriction on the minimum rms error.

Zero restriction corresponds to the Wiener theory whose results are
unattaineble since impossibly large control motions are demanded. How-
ever, as the surface deflection is reduced by means of an increasing
restriction, the minimum error increases slowly until at a realistle
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value of the control deflection the error hes Increased only a few feet.
Thus it 18 clear that the optimum performence predicted by the Wlener
theory can still be approached closely by confining operation of the sys-
tem to a realistic linear range.

The trsusfer functions of the optimum guldance system have been given
and have been compared to the corresponding transfer functions from the
Wiener theory. Differences were shown to be the result of added filtering
terms demanded by the restriction on control motion. The various filtering
factors can be traced to thelr origin., It was shown that terms due to
basic Wiener theory appear in the solution, end that the additional terms
can be assoclated with the control-motion restriction and the missile aero-
dynamics.

For the optimum system, performance against variable noise magnitude
wes glven and was compared to Wiener theory. As an example of one possible
design which achieves these results, & missile-control system was synthe-
gized to match the optimum transfer function. In a REAC simulation the
operation of this sytem was examined in further detail. It was found that
the magnitude of circuit voltages, and control-motion rates are greatly
reduced in comparison with systems in which limiting occurs. Similarly,
the required servo energies are appreciably reduced, resulting in about
g two-thirds saving.

Ames Aeronsutical Laboratory
Netional Advisory Committee for Aeronsutics
Moffett Field, Calilf,, Mey 11, 1955
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APPENDIX A
DETERMTINATTION OF THE OPTIMUM MODIFIED WIENER FILTER

The solution for the optimum compensating network Hpy illustrated
in figure 3 is given by equation (6) in the text as follows:

= iat )
© s .. P® He(ia)d
Hco(iw) = -——l—-— Jr e 1wtg/n £ ) T(a)e da 4t
O -0

2mAt(w) A (a)
where ? (A1)

[Hf(iw)Hf(iw) + e]Qii(w)

Aw)

In this equation ¢33 1is defined as

034 = Op + Oy (a2)

vhere &p and ¢y represent the spectral density of the target motion and
nolse, respectively. The quantities AT and A" are defined as the factors
of A with poles and zeros in the upper and lower half-planes, respec-
tively. Thus

A = ATA” (43)

For the case to be considered here the target motion and noise will be
taken as

kaTg
Pp = WA 1 K2 (ak)

oy =N (45)

It will be noted that the noise spectrum has been approximated here by a
constant 1n order to reduce the complexity of the calculations. As shown
in reference 3, this approximation is velid because the nolse defined Dby
equation (1) is essentially flat compared to the passband of the optimum
system. It should also be pointed out that use of equation (AL) leads to
certain mathematical difficulties which occur in the process of evaluating
the right-hand side of equation (Al), because the theory reguires that the
poles of &p mnot be located on the reel axis. To avoid these difficulties
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it is necessary to modify the target-motion spectral density to the
following .

ke (46)
T7 w(w® + 0,2 (P + n2) (P + kB)

]

vwhere 17, and 7, are any small real numbers. The soclution to equation
(A1) will then be a function of iw, 7m,, and n,. The desired answer is
obtained by taking lim Yo (iw,nl,na) as n, and n, = 0. However, it can

be shown (see ref. 3) that the same answer can be obtained more simply by
taking N, and Ny equal to zero ag would be obtained from the rigorous

process described above,

Now by combinlng equations (A2), (A4), and (A5),

031(x) = op(a) + ox(a)

a® + k®a® + (kap®/nN)
o (a® + kK32)

N (o - api)(a - app)(a = aps)(a + ap1)(a + aps) (o + aps)
p
a*(a + ik)(a - ik)

[p(a) [ -p(-a)]

a®(a + ik)(a - ik) (a7)

vhere the apm represent roots in the upper half-plane. The polynomial
pla) is

3
a) = I (a- )
P( ) ) ( a'pm B
= o® + boa® + bia + bo (48)
where
bz = -(apl + Qpo + d.ps)
by = Gpidps + CpiGps + Gpolps (A9)

bo = ~Qp lapzaps
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In a similer manner
-p(-a) = a® - boa® + bia - Do (A10)

An expression to be used later can be obtained from these preceding

equations as follows
2

k
a® + k2a% + 3; =(a® + boa® + bia + bo) (a® - boa® + Dia - Do)

from which =

-bo® = k—:%— (a11)

The quantity Hp in equation (Al) represents the fixed network or
aerodynamics and its general form (ref. 7) is given by

1 [ - 72a?) + 1(2Ta)]

d

=M _
Br(ta) = 5§ = Ts® o?[(1 - Ty2a?) + 1(2fgTaa)] (a12)
and
— 1 [(1 - T33®) - i(2fTa)]
He(la) = - Te= o=[(1 ‘Tgazd-g) - ?"-(2.%,:3.-']%8.‘:3:r (813)
Thus

T2(1) 1 [Tp*at ¢ (MPTE - 2TyF)e® + 1]
Be(la)He(ie) = 0277 CAm %a® ¥ (M 202 - 2T,2)a® + 1] (axh)
Accordingly it can be shown that in equation (Al)

He(ia)He(ia) + p

Pl 4T 4B +0Tg 4 (U5 2T 2 -2T52 ) a®+(Tp *+pTs *) a+( 4 {p>TpZ-2Tp =) a+1
Tg*ws[ Tg *at+(4843Tg2-2T52) a®+1]

% 4
nl;Il (a~aqn) n1;1l (ategn)

at[ Ty *at+ (bt 2T 2-2T,2) a2 +1]

4
el

o e q(a)g(-a)
= eta oAl Ty *at+ (4, 2T, 2-2T2) aP+1] (a15)
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where the gn represent roots in {the upper half-plane. The polynomial
a{a) ebove is

4
q(a) = nE:. (@ - agn)
= a% + cga® + co0® + cia + Co (AL16)
where N
cg = - (og1 + 0gz + ags + %ga)
Cgz = Ugilge + Uqidgs + Ogildgs + Ggotqs + Qgetqe + Cgsdqe >
(A7)
c1 = - (aqiagatgs + 0qilgetqe + Gqigsdqs + Gq2tgstqs)
Co = Aq1gzQgalq4
/
In & similar menner,
a(-a) = a? - cga® + co® - cia + co (A18)

An expression to be used later can be obtained from these preceding equa~
tions as follows

T To*aBuepTgt (Lto2T2-2T,2)a®+( D" +pT " Ja*+ (4t 2T 22T, 2) B4l
= pTg*Ta*a(a)a(-a)

= pTgTg* (o +caaS+eoa+eiatco ) (o ~caaS+esa®-ciateo)

from which

1

= ——— Al
—des (a19)

002

The second equation in (Al) can now be found by combining equations (AT)
and (A15)
q(a)a(~a)p(a)[-p(-a)]
aBfTgtat + (4,252 - 2T,2)c® + 11(a + ik)(a - ik)
(A20)

Ala) = pTa*N
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This expression can be split into two factors with poles and zeros in the
upper and lower half-planes. From the preceding definitions gq(«) and
p(a) both have their zeros in the upper half-plene, Thus

q(on)p(cr:) (a21)

At(a) = pTg*N
(@) = oTe o*(1l -~ Ta2a? + i2¢,Tya)(a - ik)

9(-a)[-p(-a)]
a¥(1 - TyZ%e® - 12§ Toa) (x + 1k) (422)

A (a) =

Now, let us consider the evaluation of the first integral in equa-
tion (Als. This integral can be evaluated by combining equations (Ah),

(A13), and (A22) as follows:

« lat
I, Ef Hr(a)op(a)e do

© A” (a)

} kaT2 fco (1 - sza? - 12§-bTba.)eia't i
Ts®n J. oF(a - ik)q(-a)[-p(-a)]

0]

keqp® f°° (1 - '1t22u.2 - iangga.)eiat i
® o2(q - ik)nl;ll(or. + aqn)mgl(a + Cpm)

2 0
= i f f(a)da (423)

TS2‘K Juo

vhere f(a) is defined as the integrand. By considering o to be a com-
plex varigble, the integral can be evaluated by a contour integration indi-

cated by the following sketch:
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There are two poles within this contour, a second-order pole at the origin
and a simple pole &t « = ik, as indicated. The residues are

Res(o) = lim 4 a?f (a) ]

a0 da
_ t kboCoac'bTb + ik(bocl + blco) + boco
~ kboco k®bo2co?
__t
¥oocg T 11 . (42&)_
R ik) = 1im (a - 1k)f(a
es(1x) = im (o - K)2(e)
_ (TpPk® + 28 Tyk + 1)e KT
-k2q(-ik) [ -p(-1k)]
= 72e-kt (a25)

Now, by means of the residue theory, the value of the integral is given
by

I, = 2;kaTa[Res(o) + Res(ik)]

Thus from equations (A24) and (425),

et o )
I, = - = 7, + Tooca + 758 (426)

The second integral in equation (Al) is denoted by Iz and is merely
the Fourler transform of I,. Hence

[0
I, = f Te" 100t
o]

2ikaT2 oo . + - s

= ok -iwt -lwt k+iw)t

= - T2 Jr [7le + hocq e_ + 7,8 ( ) }dt
o]

(a27)
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Thus it can be shown that

2ikap® (7; + 72)boco(iw)® + [kyiboco + (L/k)]iw + 1
TeZbgco (1w)2(k + iw)

I

2ikar® T 2(1w)2 + 2£, T, (10) + 1
TszboCo (im)z(k + iw)

(A28)

It should be noted that since the n's were assumed to be zero, questions
concerning the existence of the sbove lntegral arise. However, as indi-
cated in reference 3, when the analysis is made without this assumption,
the integral in equation (A27) does exist, and the limit of this integral
as the n's approach zero becomes precisely equation (A28).

The coefficients can be expressed in a more convenient form by elimi-
nating the intermediate parameters ¢y, and 7> by means of definitions
given in equations (A24) and (A25). The following results are then
obtained:

1
2€CLTQ. = kylboco + k_

boCl + blco
boco

(A29)

-2§'bT-b - i
Also

To® = (74 + 75)boco

_ boCo(Ty3k® + 28, T K + 1) _ kboco28p Ty + ik(bocy + bico) 1
kaq( 'ik-) [ 'P('j—k) ] kzboCo k2

(430)

For the missile parameters of table I and the value of k glven on page 28

T 2k% + 20Tk + 1 ~ 1

so that very nearly

_ boco 28aTq . L1
T BT T kR (a31)

T
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Now, from equation (Al) the optimum compensating network can be
determined as follows:

Iz
HCO(iw) = 21(A+(w) (A32)
Substituting equations (A21) and (A28) into (A32) gives
Heo(iw)
B kap® (iw)2[Ta?(iw)2+2gq?a(iw)+l][Taz(iw)2+2§aTa(iw)+l]
MpTs2Te¥boco p(w)q(w)
(A33)

To reduce this expression to a more standard form it can be seen from
equation (A16) that

q(w)

]
—
€
I
Q

fle}
B
~

(A3k)

|
[¢]
e}
|..|
/ﬁ‘\
+
o

Similarly from equation (A8)

p(@) = (0 - am)

3
bo m:-l-"-"[l (—m + l) (435)

Alsoc by using the definitions given in equations (All) and (A19) the com-
pensating network can be shown to reduce to

o (1w)2[T2(1w)2 + 20 Ty (iw) + 11£g§f§iw)2 + 28Tg (1w) + 1]
3 w 4
mEl<'EmT+l)n£% '@I”)
(436)

By the substitution of thé comventional complex frequency s for iw

Heo(ilw) = Tg

s2(1,2s% + 26, T.s + 1)(T,2s2 + 2t Tes + 1)

Heo(s) = Tg?
H ap—m“)n_ E-T*l)

(A37)
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It is shown later in the numericsl examples that certain terms combine to
give quadratic factors as shown below

82(T2s%42L, T 8+1) (Tg2s%42¢ Ty s+1)

Heo(s) = Tg?
(Tgs+1) (TyPs2428yTys+1) (T, 262426, T, 5+1) (T 52426 Tys+1)
(438)
where
i 1
Tg = 5 2 = -
B~ api Ty aqidqe
72 1 agi + agz
7 szaps 2§qu _TEEEZE;—
Qpz + Aps
T o= { 2T 7pS 2 _ __1
28y Ty apsaps Tv= = CRrT

=4 Jas + %q4
Bvilv = 1 “ageags

The compensating network given in equation (A38) can be used to deter-
mine the over-all transfer function Ypo. From figure 2

Yo(s) = Heo(s)Hr(s) (A39)
Substitution of equations (A12) and (A38) into (A39) gives
(T 2s2+28 T oe+l) (T, 2s2+2 8 Ty s+1)
(Tgs+1) (Ty®s=+28y Tys+l) (T, 72424, T, 5+1) (T, s%42¢, Ty 5+1)
(ako)

Yo(s) =

If Yo 1is consldered to represent & unity feedback system, the equivalent

open-loop transfer function is shown In the later specific example to be
of the following form:

(S) _ YO(S)
Ho "1 - Yo(s)

1 (T28% + 26,8 + 1) (T,%s® + 28Ty + 1)

T oH 82(Tys + 1) (T,2s® + angxs+l)(Ty?s2 + 24, Tys + 1)

(Ak1)
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Because ¢, and {, are close enough to unity (teble II) it is possible
to factor the corresponding terms approximstely to glve

(T8 + 1)(Tys + 1) (Ty,282 + 284,Tys + 1)
§2(Tys + 1)(Txs + L)[(Txs + 1)(Ty?s® + 2LyTys + 1)]

(AL2)

Ho(s) = Xy

The numerical evaluation of the optimum system has heen carried out
for the following values of target motion and nolse:

k = 0.k ep=1lg

T 15 £t2/radian/sec

5 sec N

From this exemple p will be taken to be 10% since, as shown in the text,
this value results in a near-optimum restriction on control deflection.

Evaluation of the numerator in equation (A7) gives

kBTZ

o® + xPat + 5 = a® + 0.16 o* + 8.8

3
(o = apm) ﬁgl (@ + apm)

3
= I
n=1

where

apl =i l-l|-56

1.427 exp(i 0.543)
-1.k27 exp(-i 0.543)

Gpz

Q’.ps

which are all located in the upper half of the complex a plane. Then
from equation (A9)

b = -1 2.94

by = -4.201

bo

12.97
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Similarly from equation (A1l5) for p = 104,

pTg 4Ty *aB+pTs * (185 2Tg2-2T, 2) B+ (T 40T ) at+ (46,21, 2-2T, 2 ) a®+1

(22.58x10"8)aB- (7.475x10"5)af+(6.267x10~8)a%- (0.006094 ) a2+1

4 4
pTg*Ta* ﬁEi (a-agn) .y (atagn)

Solving for the roots gives
aqy = 3.593 exp(i 0.80k)
age = -3.593 exp(-1i 0.804)
ags = 12.92 exp(i 0.058)
age = -12.92 exp(-i 0.058)

which agein are 8ll 1n the upper-half « plane. From the definitions in
equation (ALl7),

cg = -1 6.677
co = -187.61

ey = 1 883.h0
co = 2155

Now from the values of the roots opm end agn as well as the D and ¢
coefficients, the optimum compensating network can be calculated by means
of equation (A38). For this purpose 1t is necessary to evaluate the left-
hand sides of equations (A29), (A31l), and the parameters following equa-
tion (A38).  Results of these calculations are given in table II in terms
of damping ratios and undamped natural periods. Substitution of these
parameters in equations (A38) and (ALO) gives



5 1104 g2(1.28 82+1,82 s+1){0.00602 s2+0,00830 a+l)
Hea(s) = 7.91x10 (0.687 5+1)(0.490 8240.727 8+41)(0.0775 82+0.50L 5+1)(0.006 8%+0.009 8+1)
(Ak3)
%.(s) (1.28 s2+1.82 8+1)(0.00305 52+0.00243 s+l) -
° (0.687 s5+1)(0.490 8240,727 s+1)(0.0TT5 82+0.50L s+1)(0.006 240,009 s+1)
(Alk)
J(Xlso %nch)u)led in this table are the parameters of the equivalent open-loop transfer function
eq. (AKl)) which le
(8) 2 (1.28 82 + 1.82 s + 1)(0.00305 &2 + 0.00243 & + 1)
Hois 3- s2(2.5 8 + 1)(0.0338 82 + 0.266 g + 1}(0.00619 s2 + 0.00807 5 + 1)
(A%5)

ot

gley NI VOVN
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APPENDIX B

MISSILE-CONTROL-SYSTEM AFPPROXIMATION TO
THE OPTIMUM TRANSFER FUNCTION
The optimum linear system is 1llustrated in figure 1l. Imn the follow-
ing section the system equations are derived.

Using figure 11 it can be shown that

¥ kg(Tys + 1)(Tgs + 1)

Ey  Tgs(T,s + 1) (Tg252 + 2gT.8 + 1)(Tgs + 1) + kekes(Tys + 1) (Tas + 1)

(B1)

To simplify equation (Bl) it is convenient to mske Tg = Ty. This assump-
tion is not essential but 1ts use leads to simpler equations. In certain
cases where gust disturbances are serious it may be more desirable to
choose Tg small. With the former choice

Y _ kg (Tys+1)
Ey sl (TgTg3T, ) 83+(TaTo2+Tq28 T, ) 624 (TqT, +T328 g T HeghaT, ) s+ (TaHigkg) ]
kg (Tys+1)
= . 5 (B2)
Ta+kgks s(as®+bs®ica+l)
where 3
Tq + kgkg
b = Tq(Te2 + 28T, T, ) > (83)
Td_ + k.sks
o o 2LaTeTq + TiTg + kekgTy
Tg + kgksg
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Thus the entire open-loop transfer function can be written as

_ M koksV (Ty08 + 1)(Tes + 3)(Ty3s2 + 28pTps + 1)
T TE T T + keke 82(Ty .8 + 1)(Tss + 1) (as® + bs2 + cs + 1)

(Bk)

By comparison with equation (A42) it can be seen to be of the same Pform as
the optimum transfer function. Thus the following correspondences between
quentities in equations (BL) and (A42) are appropriate:

T11 & TA
Ts o Tx
> (B5)
Tio e To
Ty e Tg
J
Also it is apparent that
g €= TxTyZ

—

b € Ty2 4+ Ty2tyTy (B6)

c Ty + 2Cy’ry --

’

For these values of a, b, and c, equations (B3) can be solved for the

remaining parameters to give \
T = aTg
T bTg - a2y
Ta_Tale - aTg L.
kgka = a ? (37)
T ch. + CkSkS - EgaTaTd. - Tle
2 3

ksks
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The value of kokg 1s determined from the desired gain:
Tg + kgk

Since only kskg and kgks are specified, one of the three gains kp, ks,
or kg mey be chosen arbltrarily, subject to the condition that voltage
limiting does not occur. From the gbove equations the system parameters
have been determined and are tabulated in table ITT.
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TABLE I.- SUMMARY OF AERODYNAMTIC PARAMETERS FOR EXAMPLE MISSILE

Parameter Yalue-
Ta, 0.0775
Ty, .0552
Ta 2.087
T2 .0007911
Ty 846
e, .0536
&y .0220

TABLE IT.- SUMMARY OF PARAMETERS OF OPTIMUM TRANSFER FUNCTIONS

Furenater | WOLiTies Fioner [ Wiener theory
i Ty 1.13 0.925
ga, .805 .T65
Tg 687 687
Ty . 700 . 700
ty .519 -519
T\ 2.5 2.5
k, 3.2 7.k2
Ty 278 —--
ty .T20 ---
Ty OTTh ---
L .0581 -—
Ty .184 -
tx .22 -—
Ty .0787 -
by .0513 -




36

NACA TN 4278

TABLE III.- SUMMARY OF PARAMETERS OF OPTIMUM SYSTEM

Paremeter Value
ko 0.0538
Ty 1.13
TlO 1. 13
Tiz 2.5
Ts .18L4
kg .0L463
Y .186
ks -.67h
To <373
Tg 846
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